
 
 
 
 
 
 
 
 
 
 
 

MYORPG 
Design Document 

 
 

Team 24 
Advisor: Mohammed Selim 

Nadine Quibell: Design Lead 
Henry Williams: Security Manager 
Clayton Surfus: Server Developer 
Jonathan Morris: Meeting Scribe 

 

  

1 



Executive Summary 
 

Development Standards & Practices Used  
MYORPG is developed using the Agile software development cycle. 
 
Summary of Requirements 

● Players can connect to the MYORPG website through a web browser 
● Players can log in or create new accounts 
● Gameplay allows players to explore the game world using the WASD keys 
● Players can interact live with each other 
● Players may chat with each other or the world as a whole using a semi-persistent chat 
● Players may attack enemies using equipable weapons 
● Players can collect and use items using a persistent inventory 
● Players can upload and, with moderator approval, use their own player sprites and 

weaponry, given the use of an in-game item for creation 
● Moderators can approve and suspend player-uploaded items, mute players, and request 

the banning of a player 
● Admins can approve or deny a ban request and delete player-uploaded items, as well as 

use moderator powers 
● Players can create and combine weapons using in-game materials and the Weapons 

Forge location 
 
Applicable Courses from Iowa State University Curriculum 
COMS 309, COMS 319, COMS 363 
 
New Skills/Knowledge acquired that was not taught in courses 

● Much of our node.js knowledge was learned for this project or gained independently 
during other project classes (where it was not required) 

● Similarly, much of our knowledge of socketing used in this project was gained 
independently 

● Where/how to host a website and database  

2 



Table of Contents 
 

1 Introduction 4 
1.1 Acknowledgement 5 
1.2 Problem and Project Statement 5 
1.3 Operational Environment 5 
1.4 Requirements 5 
1.5 Intended Users and Uses 6 
1.6 Assumptions and Limitations 7 
1.7 Expected End Project and Deliverables 7 

2 Specifications and Analysis 8 
2.1 Proposed Approach 8 
2.2 Design Analysis 8 
2.3 Development Process 9 
2.4 Conceptual Sketch 10 

3 Statement Of Work 11 
3.1 Previous Works and Literature 11 
3.2 Technology Considerations 11 
3.3 Task Decomposition 11 
3.4 Possible Risks and Risk Management 11 
3.5 Project Proposed Milestones and Evaluation Criteria 12 
3.6 Project Tracking Procedures 12 
3.7 Expected Results and Validations 12 

4 Project Timeline, Estimated Resources, and Challenges 14 
4.1 Project Timeline 14 
4.2 Feasibility Requirements 15 
4.3 Personnel Effort Requirements 16 
4.4 Other Resource Requirements 17 
4.5 Financial Requirements 17 

5 Testing and Implementation 18 
5.1 Interface Specifications 18 
5.2 Hardware and Software 18 
5.3 Functional Testing 18 
5.4 Non-Functional Testing 19 
5.5 Process 19 
5.6 Results 19 

6 Closing Material 22 
6.1 Conclusion 22 
6.2 References 22 
6.3 Appendices 22 

 

3 



 
List of figures/tables/symbols/definitions 
 
1​MMORPG​ - Massively Multiplayer Online Role-Playing Game. A game genre in which players 
participate in an adventure together on a large scale. 
2​https://mmos.com/news/black-desert-announces-10000-costume-design-contest  
3​Minimum Viable Product (or MVP)​ - A game development term describing a version of the 
game which implements all key functionality but isn’t necessarily fully developed.  

4 

https://mmos.com/news/black-desert-announces-10000-costume-design-contest


1 Introduction 
1.1 Acknowledgement 
MYORPG has had significant time and effort put into it by all of its members. 
 
1.2 Problem and Project Statement 
Problem Statement: This project idea is driven by the lack of online role playing games that 
integrate their players into gameplay, specifically, allow for user-created content, short of 
modifications to existing games.  
 
Solution Approach: MYORPG is a browser-based multiplayer online role playing game, also 
known as an MMORPG​1​, which is built around the central concept of user-made content, 
allowing the player to contribute to the game in the form of their own avatars, weapons, items, 
monsters, and more, using their own art and stat distributions. Using components collectible in 
the game, users can submit custom content for moderators or administrators to approve and 
then be used in the game proper, a unique experience that has gone unutilized in the gaming 
world so far. The output of this project is a fun, playable multiplayer online role playing game. 
 
1.3 Operational Environment 
The MYORPG environment involves multiple users with a web based client connecting to a 
server. The users are able to access the web page as an HTML file as with any webpage. The 
web page displays what the users need to play the game, as well as connect to multiplayer. The 
server itself receives connections from multiple players, facilitates multiplayer, and stores data 
via a database. While the project was tested on a local network with direct IP connections and 
use of HTML and javascript files stored on a computer, the end product is accessing the HTML 
through an online webpage and the server is being connected over the internet. The webpage is 
optimized for desktop computers and the game’s interface requires a mouse and keyboard. 
There will not be any special runtimes required. The server itself can be a normal computer that 
runs the server with Node.  
 
1.4 Requirements 
As a video game MYORPG contains several key components to make the game playable and a 
manageable experience. MYORPG contains an account system accessible by all via a signup 
up and login page that can be accessed repeatedly. Using the login connects the user to the 
server and is attached to a multiplayer instance. The game itself consolidates several elements 
in one page. There will be a main game window from which graphics are displayed. There is a 
chat window which allows a user to chat with others in the same instance of the game. There is 
an inventory window for managing ingame items and tying into a crafting and shop menu which 
allows a user to create, purchase, or sell existing items. The game world is controlled via the 
keyboard, and includes a detailed overworld with grass and buildings, along with dungeons with 
a more constrained environment. Finally there is also a combat system. Fully implemented 
combat will effectively be another menu that replaces that of the game world’s when prompted. 
The game supports upwards of eighty players in one instance, multiple user cases, uploading 

5 



and rendering of graphics while maintaining an acceptable performance on all connected 
machines (30 frames per second) and is controllable by users with desktop computers.  
 

1.4.1 Engineering Constraints 
Our project requires a server that meets the following specifications in order to run our game 
smoothly and as intended by the client. Our server currently runs on a single CPU core. The 
storage requirement can be flexible as most of the content can be stored using the AWS S3 
service. The memory requirement can be increased when more data is being stored in the 
server’s memory. 

 

 
 
1.4.2 Non-functional Requirements 
 

 
 
1.5 Intended Users and Uses 
The RPG has three main users, players, moderators, and admins. Players can login, register, 
play the game, and use items to upload new weapons made with custom images. They have 
access to the screens associated with these activities. Moderators have all the same privileges 
that players would. In addition they are able to approve the custom images that players upload, 
mute players use the chat if they act inappropriately, and request a ban for players that routinely 

6 

Server Specifications 

CPU Cores Memory Storage 

1 vCPU 1GB 40GB SSD 

Non-Functional Requirement Outcome 

Frame Rate A steady 30 FPS is maintained while playing 
the game. 

Security User information is kept safe. Unintended 
actions are not possible in the game. 

Communication Multiplayer interaction has acceptable 
uptime(>=99%) and response time (<1 
second) 

Zones Communication and actions that happen in 
zones are kept to their specific zone. 

Compatibility The game works on web browsers. Each 
client is identical to other clients. 



break the rules. These would be implemented via additional screens and buttons added to the 
chat window. Admins have all of the privileges of both players and moderators. In addition to 
this they would be able to ban people and view requested bans through another window. They 
would have the most privileges out of all user cases as a result. The intended users of the game 
are anyone with a computer and an interest in playing video games. Moderators and admins are 
community volunteers who would spend extra time to ensure that the game’s community 
remains fun for all. 
 
1.6 Assumptions and Limitations 
Assumptions: 

- Our end product is accessed through an internet browser worldwide, where the website 
is permitted 

- Users in the sub-category of ‘players’ are be able to submit items, dungeons, or other 
custom content for users in the sub-category of ‘mods’ or ‘admins’ to be added to the 
game at a later date. 

- Up to 32 players are be able to interact on one world at once, although more than 32 will 
be able to play the game at once (just not interact directly) 

Limitations: 
- Users require an internet browser and internet connection to make use of our end 

product. 
- User need an internet connection to access the product website 
- Project schedule determined which features are be available in the initial release of the 

game 
 
1.7 Expected End Project and Deliverables 
A minimum-viable product version of MYORPG will be delivered for beta testing over the 
summer, in May 2020, with the end of S E 491. This version of the game will be a bare-bones 
but playable version of the game, allowing players to create accounts, log in, interact, and fight 
monsters. Item upload will be implemented and regulated, but without in-game balancing. 
 
The end product of this project is MYORPG, a browser-based multiplayer RPG. The product will 
be available for use free of charge. It will require an internet connection and internet browser to 
access. Access to the product will also be controlled on a black-list basis by administrators. The 
game will be completed in December of 2020, with the end of S E 492. 
 
  

7 



2 Specifications and Analysis 
 
2.1 Proposed Approach 
When creating our approach to MYORPG’s development, we split the design work into three 
main facets: the UI, the game code, and the database. 
 
To encourage user participation, we chose a simple, 2D style for MYORPG’s UI, where 
animation could be programmed through code and any uploads would only need to be a single 
image. We pulled inspiration from early 2000’s flash games for the art style-- games that were 
often created by a single person or a small team-- so that the main game content and uploaded 
content wouldn’t look jarring side-by-side. This also gave the game a nostalgic feel, something 
we continued to lean into when designing further UI throughout its development. 
 
In terms of the code, MYORPG is developed with a client-side frontend and a web server 
backend. The focus of the frontend is to display the game and perform any user-centric logic, 
such as movement and interacting with game objects. The server performs any communication 
needed to keep all the players up-to-date with each other, including storing basic user 
information needed by new players joining the room and updating the location of each map’s 
monsters. The frontend and server are written in JavaScript, with the server using node.js, and 
these two interact with sockets, making use of socket rooms to separate players based on 
which area of the game they are currently in. Finally, the webpages for the frontend are written 
in HTML and CSS. 
 
The database is a relational MySQL database, designed to allow flexibility in MYORPG’s 
structure. Relations between items and users and n-to-n, and templates for things such as 
monsters are stored here, from which instances can be spawned in the server. Since this is the 
game’s persistent storage, anything needing saved between player logins is saved to the 
database. 
 
We have identified several node libraries to make use of in our project; primarily express and 
socket.io. The libraries allow us to rapidly develop and prototype certain features of the product, 
such as multiplayer capability, with ease. The libraries we chose to work with are heavily 
documented and are the industry standard when working with node.js. 
 
2.2 Design Analysis 
MYORPG lent itself very well to a modular design structure for its software architecture. The 
basic functionalities for zones (sections of the frontend) are split into small, mostly-independent 
scripts that are then referenced by each zone’s main html page. The scripts 
basicUpdateLogic.js, chat.js, combat.js, cookies.js, inventory.js, and playerController.js, are all 
independent of each other, provide functionality for their named parts, and are included in every 
zone. A camera, either freeCameraController.js for larger maps or fixedCameraController.js for 
small maps, is then attached, and are completely interchangeable with each other. Each zone 

8 



also has a named js file that provides some basic, zone-specific information that is then 
referenced by the zone modules, and util.js is also included, containing basic Javascript object 
information used by the modules. 
 

 
 
 
While the node.js server is confined to one file, the data structures on it are separated by zone 
as the frontend is, and all socket functionality is non-zone-specific. 
 
 
 
2.3 Development Process 
Our project followed an agile development process. Everyone was assigned a task for the 
current sprint, a 2 week period, and moved it through our task board until the task was 
completed. During weekly meetings, group members shared their current progress, and, at the 
start of the next sprint, were assigned new tasks based on our progress and the project 
schedule. Once a month, the team planned to meet with the project advisor to share status 
updates on the current project. This keeps everyone involved with the project informed of where 

9 



it is currently at and where it will be heading. Any project blocks that the team comes across will 
be maneuvered around early. By following the agile development process we helped guide the 
project to success. 
 
2.4 Conceptual Sketch 

 
There are three main modules of MYORPG: the website, the node.js server server.js, and the 
mySQL database. 
 
The website, which is what the user connects to and loads via a web browser, consists of a 
main menu page for login, a number of administrative web pages such as the account page, 
and a series of world zone pages for each of the game areas the player can explore. The game 
pages consist of generally the same CSS block and in-game menu blocks, with the map and 
zone-specific data changing. The zone locations and their functionality is designed to be highly 
modular. 
 
The server.js file is the node.js server that runs the game from our remote host. It calls basic 
functionality from module scripts, such as logging in and uploading an object. The main 
functions of server.js are to connect to the players in various world locations and host their 
sockets, updating player data to the users at 30 FPS, and to interact with the mySQL database 
using queries. 
 
The database is the static storage for MYORPG, storing user, item, monster, zone, etc. data. It 
interacts with server.js using query responses. 
  

10 



3 Statement of Work 
 
3.1 Previous Work and Literature 
MYORPG is loosely based on old-school MMORPG games, such as RuneScape, WoW, Guild 
Wars, Everquest… The basic mechanics of those games and the aesthetic of those early days 
of online gaming are the foundations of MYORPG. Creating a fantasy fighter, equipping 
ridiculous weapons, fighting monsters, and dungeon-crawling are not new concepts to the 
MMORPG genre and are being re-used in this game to incite the nostalgia those things bring 
with them. 
 
New to the MMORPG genre and much of gaming, however, is MYORPG’s concept of adding 
player-created content to the game as a core feature. Player engagement like this is a step up 
from forums and the occasional user-create content contests many of these games have [2]. 
With this, MYORPG hopes to foster a unique, creative community among the MMORPG 
community. 
 
3.2 Technology Considerations  
AWS is scalable enough that serverside burdens are not much of a consideration right now. 
Client-side, the game should run at 30 frames per second, and is only designed in mind for 
personal computers rather than for mobile devices. The controls will keep in mind that the user 
has a full keyboard and a mouse or trackpad available.  
 
3.3 Task Decomposition 
Fundamentally, there are three major tasks to decompose for our project: Player Accounts, 
Multiplayer Functionality, and User Interface. Between the three of them, there are a number of 
smaller tasks that show up in their decomposition. These tasks are building the player inventory, 
incorporating submitted cosmetics, the combat system, dungeons, and the separation between 
different player zones. One primary dependency underlying all of this is the multiplayer server 
itself. Without a multiplayer server, players will have no way of getting game data for their 
inventories, cosmetics, combat, dungeons, or even what zone they are in. 
 
3.4 Possible Risks and Risk Management 
Right now the main risks would be instability or downtime. AWS is robust enough to have little 
downtime. However if the client performs poorly or has major technical flaws the game will need 
to be left online until these issues are addressed. With continuous integration even the flawed 
version will be kept online, which will require evaluating whether to keep the game online even 
in the face of major security flaws. To manage this and keep downtime at a low rate only upon 
major vulnerabilities being discovered should the game go down. Otherwise even in the face of 
poor performance changes can be made while the game itself stays up. 
 
3.5 Project Proposed Milestones and Evaluation Criteria 

11 



Each of the milestones below represent a part of the game system. The system will interact with 
each other to provide an overall good gaming experience. Only once the client approves of the 
work done will the milestone be considered completed. 
 

 
3.6 Project Tracking Procedures 
Trello will be used to store a backlog of tasks, current task progress, and completed tasks. Each 
team member will be assigned a task and update the task card as they make progress. Once 
the work for the task has been completed, the card should be marked as done. 
 
3.7 Expected Results and Validation 

12 

Milestone Description/Satisfiability  

Accounts Users are able to enter their information such 
as username, email, and password to create 
an account. They may use the information 
entered to sign into the game. 

Multiplayer Players can interact with other players and 
monsters currently connected to the game in 
real time. Each interaction by a player or 
monster shows up on each client’s browser. 

User Interface Players are able to view and use interfaces to 
gain knowledge about their player such as 
viewing items currently in their inventory. 

Zones Zones split up the players into different areas 
of the game. Players are only able to see 
actions of the other players in their zone. 

Items Items enhance the player’s character in the 
game. Player’s are able to store items in their 
inventory. 

Combat System Players can fight monsters around the game. 
The system can use the player’s stats and 
the monsters stats to calculate the damage 
done and resulting effects. 

Dungeons The game will create dungeons instanced to 
a player. Each dungeon will generate their 
own monsters, items, and more. The 
dungeon can only be used by the player(s) 
assigned to the dungeon. 



Each end product is expected to work alongside the rest of the project and depending on the 
product, independently. This is validated by running the result with the rest of the master branch 
on the AWS server and seeing if it works. When this is verified and any changes that need to be 
made are made, the result is marked as done. 
  

13 



4 Project Timeline, Estimated 
Resources, and Challenges 
 
4.1 Project Timeline 

 

 
The first semester consisted of completing a minimum viable product for the game that 
showcases all it can do, if not all to its fullest extent. Players can make accounts, join the game, 
chat, fight monsters, loot items, and, of course, upload images.  
 
 

14 



While much of semester one was spent building the game up from the ground and making it a 
workable product, semester two was focused on adding functionality and really making 
MYORPG into what it was meant to be. The ability to make custom uploads into usable items, 
new zones, dungeons, and the forge were the main focus in the second semester. The efforts 
were more focused in the first weeks on making zones more plug-in-able, after this, the team 
optimized scheduling by being able to work on these separate pieces concurrently without 
worrying about them affecting other pieces. The last two weeks of semester two were reserved 
for schedule changes, testing, and finishing touches. The second semester schedule 
maintained a similar momentum as semester 1 one as we held each other accountable, and 
allowed for creative freedom in how it’s made, by continuing our twice-weekly team meetings. 
 
4.2 Feasibility Assessment 
Our goal was to develop a MMORPG that involves customization allowing for the player to 
upload their own images to create their own items and characters. Players are able to take the 
items and use them to fight monsters in the game. Developing the game for the browser allows 
users to quickly create an account and jump right into the game. This makes the game easily 
shareable via a link. No downloads will be required by the user in order to play the game. The 
timeframe of the project is two semesters. The first semester focused on prototyping and 
building the foundation while the second semester took the foundation and built on it. Getting 
the challenging tasks out of the way in the first semester allowed us more time to come up with 
solutions to challenging tasks. 
 
Below are the anticipated challenges that were thought to occur during the development of the 
project. 
 

15 

Potential Project Challenges 

Challenge Description 

Concurrent Player Count The game needs to handle the max amount 
of players per server with no noticeable drop 
in gameplay experience. 

Custom Items and Characters Players are able to upload custom images for 
items. Additional support will be needed to 
make sure the items fit the game and don’t 
degrade the experience of the game such as 
framerate drops or connection issues. 

Combat System Developing the combat system involves 
coming up with a well thought out experience 
for the player. The system needs to take the 
player’s and monsters stats into consideration 
when calculating damage done. Additionally, 
it will display what is happening on the 



 
 
4.3 Personnel Effort Requirements 
Below are the projected efforts of tasks that were thought to take a considerable amount of 
development time. Requiring multiple developers to work through the problem in order to find a 
solution. 
 

16 

backend to the currently in combat player and 
other players in the current zone. 

Monster Artificial Intelligence Developing the intelligence for monsters will 
be a large undertaking as it will need to 
interact with the players and combat system. 
Monsters need to know where it can move, 
what it can attack, and more. Different 
monster types will have different intelligence 
as not all monsters move the same way. 
Additionally, the monsters will need to interact 
with the combat system as their main 
purpose is to attack players. 

Task Personnel Projected Effort 

Database Table Creation Backend Developer The table will need to be 
designed carefully but overall 
is quick to implement. 

User Interface Creation Game Developer Depends on the complexity of 
the component needing the 
interface. 

Sending Data Over Socket Game Developer 
Backend Developer 

Quick to add data that needs 
to be sent over a socket. 

Creating Unit Test Game Developer 
Backend Developer 

Depends on the complexity of 
the component needing the 
test.  

Backend Feature Backend Developer Depending on the complexity 
of the task. The feature may 
be a small feature that could 
be implemented quickly. 
While the feature could be 
large and requiring weeks of 
work to be completed. 

Canvas Game Feature Game Developer Depending on the complexity 



 
4.4 Other Resource Requirements 
Due to the solely software nature of MYORPG, no additional outside resources were needed for 
constructing the project. 
 
4.5 Financial Requirements 
No financial resources were required in the making of MYORPG, as the team produced 
everything in-home using free software. In order to be hosted to a worldwide audience, 
however, a web host was needed to host the server and database for the game. MYORPG used 
Amazon Web Services to host the production server. Additionally, MYORPG used free credits 
for AWS. In the future, AWS will cost money to be used. In the table below are the costs and 
services to be utilized. AWS charged hourly based on type and size of instance being used. Our 
service used an EC2 instance to run our code, S3 for storing custom images uploaded by the 
users, and RDS for hosting our database. In the future, if MYORPG needed to be scaled, the 
price would be increased by deploying more instances. 

 

  

17 

of the task. The feature may 
be a small feature that could 
be implemented quickly. 
While the feature could be 
large and requiring weeks of 
work to be completed. 

AWS Instance Cost (Monthly) 

EC2 Micro (Server) $0.0116 * 750 Hours = $8.70 [1] 

S3 (Storage) $0.023 * X GB  ($0.023 * 50 GB = $1.15) [2] 

RDS (Databases) $0.017 * 750 Hours = $12.75 [3] 

Total $22.60 



 

5 Testing and Implementation 

 
5.1 Interface Specifications  
There are no notable hardware/software interfaces involved in our project. 
 
5.2 Hardware and Software 
The MySQL database, Jasmine on Node.js, and an internet browser are being used to test the 
effectiveness of our product.  
 
5.3 Functional Testing 
Unit testing is used to test critical parts of our application. As features get added, tests are 
needed to keep the older set of features working and running as expected. Our project utilizes a 
javascript test runner called Jasmine. This framework allows us to do both client side and server 
side unit testing this way. The runner can run in a web browser or via command line. 
Additionally, the runner can be configured to run tests in a random order. Running tests in 
random order can help catch uncommon failures. Our routes such as /signin and /signup 
contain automated unit tests to send POST requests to the route in order to determine if the 
route is working as intended. Developers can run the automated tests by using the command 
“npm run tests”. 
 

 
Ultimately, the client will try out the changes once a feature has been implemented. If the 
developed feature meets their satisfaction then the feature is completed. Furthermore, our 
application is continuously deployed on AWS from the master branch of our git repository. 
 
  

18 

Functional Requirement Test Case 

Register A user can create an account 

Sign In A user can sign in to the game. 

Move A user can move their character in the game. 

Items Items are spawned into the game. Players 
are able to pick up items and the items show 
up in their inventory. 

Collision Players, platforms, and monsters have 
accurate collision detection. They will not go 
through each other.  



5.4 Non-Functional Testing 
Keeping performance, security, and compatibility in mind during development is key. 
Developers test for performance, security, and compatibility during development of their feature. 
If the requirements are impacted harshly, the feature will need to be reworked. 
 

 
 
5.5 Process 
As each branch was made to implement specific features, a trello card was moved from the 
backlog to being in progress. This was verified to ensure that we were following the agile 
methodology and our workflow was running smoothly. After commits were pushed to the gitlab 
page, we could then check the final result via CI/CD on our AWS server. After features were 
handled by this automated system they manually verified to ensure that everything was working 
properly. If not, then the feature could receive more work and the process repeated until the 
AWS server showed that everything was working as intended. 
 
5.6 Results 
In the future, our tests will ideally run when a branch is merged with the master branch. This will 
check to make sure the merged code does not break our functional features. This will be 
updated second semester to provide the results of our testing. 
 
5.7 Libraries and Code 
We used several node libraries in our project. The libraries allowed us to rapidly develop and 
prototype certain features of the product such as multiplayer with ease. This allowed us to focus 
on the task at hand instead of spending time reinventing the wheel. Several of the libraries such 
as socket.io are heavily documented and are the industry standard when working with node.js. 

19 

Non-Functional Requirement Outcome 

Frame Rate A steady 30 FPS is maintained while playing 
the game. 

Security User information is kept safe. Unintended 
actions are not possible in the game. 

Communication Players are able to communicate with each 
other. 

Zones Communication and actions that happen in 
zones are kept to their specific zone. 

Compatibility The game works on web browsers. Each 
client is identical to other clients. 



● Socket.IO is a library used for sockets. The library is offered for use on the 
server-side and client-side. This library simplifies the use of sockets throughout 
our application. 

● Bcrypt is a library to handle hashing text such as passwords. Additionally, the 
library supports comparing hashes in order to verify the created hash matches 
the stored hash. 

● Express is the web framework that runs the website for our project. The web 
framework handles routing such as the homepage, sign up page, sign in page, 
and more. Additionally, it offers more packages to handle user login sessions and 
POST/GET request parsing.  

● Express-Handlebars is a view engine package made specifically to work with 
express. The view engine utilizes server-side page rendering allowing for us to 
insert server-side data pulled from the database or user session such as 
username, items, and more. 

● Multer is a package made to handle multipart form-data specifically image 
uploading. This library allows us to verify MIME types and image size with ease. 
Additionally, it uploads to the correct directory as specified. 

● SendGrid is a third-party service that provides us a mail server to use for 
delivering our password reset links into our user’s mailboxes. We use their 
sendgrid/mail package with Node to communicate with their service by using an 
API key provided by them to us. 

 
5.8 Database Structure 

Our database is composed of multiple tables to keep track of specific data within our 
game. We used primary and foreign keys to reference data between tables. Thus, we can 
modify data in the item table and make changes to other tables referencing that key. 

 

 

20 

User Table 

varchar (KEY) varchar varchar varchar int int varchar varchar int 

username graphic password email hand
x 

handy weapon armor power_leve
l 

Items Table 

varchar (KEY) varchar int int bool 

iname graphic width height approved 

Weapons Table 

varchar (KEY) int int int int 



 

 

 

 

 

 

 

21 

wname watk matk hiltx hilty 

Armor Table 

varchar (KEY) int int 

aname wdef mdef 

Inventory Table 

varchar (KEY) varchar int 

iname username num 

ResetTokens Table 

varchar (KEY) varchar timestamp 

token user created 

Monsters Table 

varchar (KEY) varchar int int int int int int int bool 

monsterName sprite monsterHeight monsterWidth str dex inte wis vit approve
d 

Platforms Table 

varchar (KEY) varchar int int 

zoneName graphic xpos ypos 

Zones Table 

varchar (KEY) varchar 

zoneName map 

Uploads Table 

varchar (KEY) varchar 



 

6 Closing Material 
 
6.1 Conclusion 
During the first semester of senior design, the MYORPG development team got decently ahead 
of the original schedule. Midway through the semester, a modified schedule (appendix 4.1.a) 
was put into place and a schedule for next semester (appendix 4.1.b) was created. Secure 
player login, the first game zone, multiplayer functionality including a player controller and chat, 
live web and database hosting, inventory, equipment, and minimal monsters are the major goals 
that have been completed so far. 
 
During the second semester, our focus was turned from implementing functions of the game to 
readying it for future updating and preparing the deliverable: a minimum viable product​3​ (MVP) 
for MYORPG. Primarily, the server was refactored to gracefully allow for connections from 
multiple game rooms using the socket room functionality. The game UI was redesigned with 
more reliable object collision, a functioning map-scrolling camera was added, weapons were 
fully implemented into the game, and monsters were re-added with functional spawning and 
player interaction. MYORPG’s website was further fleshed out with many quality-of-life 
functions, including an account page, an upload and upload moderation page, and many 
security features, including end-to-end encryption and a password reset. Additionally, the basic 
functions of the weapons forge were implemented, allowing players to combine existing 
weapons into a single, more powerful weapon, a key feature for MYORPG. 
 
Due to the shortened second semester, among other things, caused by COVID-19 measures, 
our team dropped dungeon implementation in favor of rounding out the existing functions of the 
game and delivering a clean MVP. 
 
6.2 References 
“Economics 2: EC2,” ​Amazon​. [Online]. Available: 

https://aws.amazon.com/ec2/pricing/on-demand/. [Accessed: 26-Apr-2020].  
“Amazon S3 pricing,” ​Amazon​. [Online]. Available: https://aws.amazon.com/s3/pricing/. 

[Accessed: 26-Apr-2020]. 
“Amazon RDS for MySQL Pricing,” ​Amazon​. [Online]. Available: 

https://aws.amazon.com/rds/mysql/pricing/. [Accessed: 26-Apr-2020]. 
 
6.3 Appendices 

22 

filename username 



 
2.2.a 

 
2.4.a 

23 



 
GANTT charts for semesters 1 and 2 schedules (from section 4.1): 
 

 
4.1.a 

 
4.1.b 
 
6.3.1 Operations Manual 
MYORPG is managed through AWS. The game is playable with many standard web game 
controls, with additional instruction for moderation. 
 
6.3.1.1 Server Management 

1. Create an EC2 instance via AWS. 

24 



2. Create a RDS MySQL server via AWS. 
3. Import the queries from “usefulQueries.sql” to create the tables with the correct schema. 
4. SSH into the server and Install NodeJS. 
5. Clone the repository on the server. 
6. Navigate inside the myorpg folder and run “npm install” 
7. Navigate to database.js and change the production credentials to match the RDS 

credentials. 
8. Sign up for a SendGrid account and set up the account with your preferred domain 

name. Additionally, navigate to /routes/user.js and swap out the API key to your API key. 
9. Install PM2 which is used to automatically restart the server if it crashes. 
10. Run the server by using “pm2 start server.js -- production”. 
11. Navigate to the server ip, the homepage should be displayed. 

 
6.3.1.2 Administrative Operation 

Content Approval 
- Moderators can approve or deny user uploaded content. Navigate to your user 

profile by clicking the link at the bottom of the game page. Click the 'Approve 
Content' link, and you will see any monsters, items, or other user uploaded 
content that is pending approval. Click 'approve' next to an item to approve it, or 
click 'deny' next to an item to deny it. 

User Promotion/Demotion 
- Administrators can promote players or moderators to a higher status or demote 

them to a lower status. Click the 'User Promotion/Demotion' link, and you will see 
a list of all current users who you have permissions to promote or demote. Click 
'promote' next to a user to promote them from Player to Moderator or Moderator 
to Admin. Click 'demote' next to a user to demote them from a Moderator to a 
player. 

 
6.3.1.3 User Manual 

Sign-Up: 
- Navigate to the homepage at ​http://myorpg.com/​ and click 'sign up'. Enter a 

username, email, and password, and then enter your password again. Click the 
button labeled 'Sign Up'. 

Sign-In: 
- Navigate to the homepage at ​http://myorpg.com/​ and click 'sign in'. Enter your 

username and password in the boxes labeled as such, and then click 'Log In'. 
- If you forgot your password, click the 'Forgot Your Password?' link. Enter your 

username and click 'Reset Password'. This sends an email sent to the email 
address you signed up with containing a link with further instructions. 

Player Character Interaction: 
- Press W to jump, A to move left, D to move right. 
- Press E to interact with NPCs 
- Press F to pick up items. 

25 

http://myorpg.com/
http://myorpg.com/


- Click to attack w/equipped weapon 
Chat Usage 

- To type and send text via the chat, click into the text box and type. While typing in 
the chat box, your player character will not receive movement input. 

- To send a message into the chat, click the 'send' button or hit the 'enter' key. 
Submitting New Content 

- From the main game page, click the 'Profile' link at the bottom. From there, click 
'Upload Content', and then fill in the boxes what type of content you are 
uploading. Once done, click 'Upload x', for whatever type you are creating. 

26 


